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The distinct deviations from the Fermi-Dirac statistics ascertained recently at 
low temperatures for a one-dimensional, spinless fermionic discrete lattice gas 
with conserved number of noninteracting particles hopping on the non- 
degenerated, well-separated single-particle energy levels are studied in numerical 
and theoretical terms. The generalized distribution is derived in the form n(h)= 
{Yhexp[(eh--#)fl] + 1} -1 valid even in the thermodynamic limit, when the 
discreteness of the energy levels is kept. This distribution demonstrates good 
agreement with the data obtained numerically both by the canonical partition 
function technique and by Monte Carlo simulation. 
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1. I N T R O D U C T I O N  

Recently we ascertained, (1) mainly by the Monte Carlo simulation, that the 
one-dimensional, spinless fermionic discrete lattice gas with conserved 
number of particles does not obey the conventional Fermi-Dirac statistics 
as one would expect. (2) This surprising result is systematically studied in 
the present paper by numerical and theoretical means, leading to a closed 
formula for the sought generalized distribution for this lattice gas within 
the canonical ensemble, valid even in the thermodynamic limit when the 
discreteness of the lattice is kept. 

We consider a system in statistical equilibrium and consisting of Np 
undistinguishable, spinless particles hopping on a ladder constructed of N 
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equally distributed nondegenerate, well-separated, single-particle energy 
levels. The higher levels have of course larger potential energies, which can 
be realized e.g., by the application to the lattice gas of a biased field (acting 
against the vertical axis). The length of the ladder was chosen so that the 
jumping particles never reach (in practice) the top of the ladder and, 
analogously, the holes do not reach its bottom (nevertheless, blocking 
boundary conditions were imposed for the system). We assume that any 
particle can hop only up (with jump rate FT) and down (with jump rate 
F;)  to the nearest-neighbor empty site, and exchange between different 
particles is forbidden. Apart from double occupancy of the sites, which we 
have excluded (this is an analog of Pauli's exclusion principle), there are no 
other mutual interactions between particles. Such a model can represent 
some general statistical physics aspects of real fermionic systems; it also 
should be possible to verify the above mentioned result directly in real 
experiments. (3) So we do not study the ideal quantum Fermi gas, but a 
discrete lattice gas with a site exclusion principle imposed on the system. 

We consider mainly the most important, low-temperature region, i.e., 
the one for which the dimensionless temperature z < 1 {here we define 
r = [ l n ( F ~ / F ~ ) ] - 1 =  (fl A~)-I, where fi = 1/k B T and A~ is the discreteness 
i.e., the energy difference between two consecutive energy levels}, since 
earlier (I) we found, in principle, by Monte Carlo simulation, that devia- 
tions from the Fermi-Dirac statistics are then enhanced, especially in the 
vicinity of the Fermi level. 

In Section 2 we develop an algorithm for numerical calculation of the 
canonical partition functions and hence evaluate in the standard way (4) the 
sought distribution (and its deviation from the Fermi-Dirac statistics). 
Section 3 (together with the Appendix) is devoted to the theoretical deriva- 
tion of the sought distribution. Section 4 presents our current numerical 
and theoretical results and their comparison with the data of Monte Carlo 
simulation (obtained earlier(~)), as well as a discussion and concluding 
remarks. 

2. T H E  A L G O R I T H M  

It is commonly known that the equilibrium statistics of noninteracting 
fermions can be exactly expressed within the canonical ensemble by the 
following (general) relation (4) which is suitable as the starting point of the 
present considerations: 

1 
n ( h ) -  h = 0,..,, N -  1 

exp(flG) Z h ( N - -  1, N p ) / Z h ( N -  1, Np - 1 ) + 1' 

(1) 
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where, e.g., the conventional, "incomplete," canonical partition function 
Zh(N-- 1, Np) is defined (for Np ~< N -  1 ) in standard terms as 

Zh(X_l,  Up) = ~(h) e x p [ _ ( n o e o  + ... +n~v_leu_1)fl] ( la)  
nO ,..., giN _ ! 

This sum is extended over all levels except the fixed number h one, 
excluded from the system. The conventional "complete," canonical parti- 
tion function is of course defined analogously while the sum is extended 
over all levels in the system. The occupation numbers nj are nj = 1 or 0 for 
each level j when it is occupied by a particle or not, and satisfies here the 
conservation condition 

N - - I  

Z (h' nj = Up 
j=o 

The aim of the considerations in the present section is to find the 
algorithm for numerical calculation of the ratio of the incomplete partition 
functions used in (1). The algorithm for this calculation 3 is based on the 
recurrence relations fulfilled by the canonical partition functions. By using 
the standard definition of the canonical partition function and by performing 
explicitly the summation over two possible values of the occupation 
number nN-k-z we get 

Z'h(U-k-  1, Np-m)= Z 'h (N-k -  2, Np-m) 

+Z'h(N-k-Z,  Np-m--1)exp(-fleN_k 2) (2) 

k = 0,..., N - 4 ;  m = 0 ,  1 ..... Np-2 

where, e.g., Z 'a (N-k - l ,  Np-m) is the "specific," canonical partition 
function having k topmost consecutive levels and m particles excluded from 
tile summation in definition ( la)  of the incomplete, canonical partition 
function (note that Np-m <~N-k-2).  We consider here an auxiliary, 
incomplete system in which the energy level previously denoted as eh is 
excluded and therefore not taken into account by the k-index numeration. 
Additionally, we can write the following necessary boundary relations: 

K - - 1  K - - 1  

Z'h(K, 1)=  Z exp(--figj), Z'h(K,K)= I~ exp(- f le j )  
j = O  j = 0  

K=I,...,N 

The computer programs used in refs. 1 and 2, and in this paper are available on a DSDD 
disc 5.25" or/and 3.5" for microcomputers compatible with an IBM PC. 
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which complete the algorithm. This is a recurrence procedure which begins 
at k = N -  4 and m = Np - 2 and runs down to the final values of k = m = 0. 
It is at these values of indexes that the procedure is terminated, giving 
the sought partition functions: Zh(N-- 1, Np) = Z'h(N- 1, Np) and 
Zh(N-1, Np-1)=Z'h(N-1, Np-1). (We see that this algorithm 
provides more partition functions than we currently need.) The proposed 
algorithm is not as effective as, e.g., the one developed in ref. 5, but simple 
enough and appropriate for the present study. 

3. T H E O R E T I C A L  C O N S I D E R A T I O N S  

In the present section we simplify primary expression (1) by relating 
the incomplete, canonical partition function Zh(N--1, Np-1) to the 
Zh(N--1, Np) one, to find the closed analytical formula for the sought 
distribution n( h ). 

The following quite general Taylor expansion (both for the complete 
and incomplete, canonical partition function) can be written (if ANp ~ Np): 

lnZ(h)(I, Np--ANp),~lnZ(h~(I, Np)-ANpc~(h)+(ANp)2?(h)/2 (3) 

where e(h)(I, Np)= [ln Z(h)(I, Np)]' and 7(h)= [e(h)]' (here the prime 
denotes the partial derivative over the second argument, and Np <~ I). By a 
combining expansion (3) (for ANp= 1) with expression (1) we obtain the 
formula 

n(h) = { Yh exp[(eh --/~)/3] + 1 } - '  (4) 

where the correction term Yh = exp(fl~t + ~h--Th/2) [here ~h = C~h(N--1, Np) 
and 7h= ~h(N--1, Np)]; /~= -~ / /? (>0)  is the chemical potential or Fermi 
level (discussed later). 

When deriving the conventional Fermi-Dirac statistics, only the  first 
two terms in expansion (3) are taken into account(a); all other terms are 
neglected. It is easy to prove that in such a case the ~ coefficient is 
h-independent. Hence, the correction term Yh = 1 independently of the 
number of the level. 

Our case is more complicated, since we take into account the first 
three terms in expansion (3); such an approach is particularly important at 
low temperatures for finite discreteness. The principal aim of this study is 
eventually to find the analytical closed expression for the correction term 
Yh- This is performed in the Appendix, since several tedious mathematical 
steps are required. 

By a similar procedure one can easily calculate the joint probability 
n(h, k) of finding a particle at level h and another particle at a different 
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level k, in order to discuss the static correlation effect. We can prove that 
this joint probability (in the general case) cannot be factorized, i.e., 
n(h, k) # n(h) n(k), which means that the particles are correlated. However, 
the particles would be uncorrelated if all higher terms, except the first two, 
were neglected in an expansion like (3) (which is equivalent e.g. to the 
transition from the discrete to the continuous distribution of the energy 
levels, as we point out in the next section). These conclusions are consistent 
with our earlier observations, (~) where we tried to interpret the correlations 
in dynamic terms, as caused e.g., by the back-jump effect. Very recently it 
was proved (6) that the dynamics of this nonhomogeneous correlated 
fermionic discrete lattice gas can be described in terms of the XXZ -  
Heisenberg model. 

In Section 4 the sought distribution n(h) given by (4) and the correc- 
tion term Yh given by the formula (A3) are compared with our numerical 
data. 

4. R E S U L T S  A N D  D I S C U S S I O N  

As already mentioned, in the model developed here we assumed that 
the hopping particles never reach (during the long-time computer experi- 
ment) the top of the ladder, and likewise the holes never reach its bottom, 
which in practice eliminates the influence of the boundary condition (unin- 
teresting for the present considerations). From the above it follows that to 
a good approximation we have the Fermi level # = (Np - 1/2) A~; hence we 
have 7 = - f l  A e - z - 1 .  Eventually these values of/1 and 7 are used in our 
calculations. In the half-filled case N p / N =  1/2 this result is exact because of 
the particle-hole symmetry condition. In general, in a finite system the for- 
mula for the Fermi level is satisfied only at a sufficiently low temperature 
and/or sufficiently large discreteness. Here we study the important region 

< 1 where the obtained distribution differs essentially from the conven- 
tional Fermi-Dirac statistics, and the latter one distinctly differs from the 
Boltzmann distribution. It is seen that the limit 7 ~ 0  occurs when the 
transition from discrete to the continuous energy spectrum takes place 
and/or the temperature tends to infinity, i.e., when relative discreteness 
A~/k T ~  0 and/or the energy (Np - 1 ) Ae ~ e > O. 

In Fig. 1 our results for the distribution of the fermionic lattice gas are 
compared with the conventional Fermi-Dirac statistics at ~ = 0.646 (which 
is equivalent to, e.g., 150 K when Ae = 0.02 eV). We present four types of 
results, obtained by: (i) Monte Carlo (MC) simulation discussed earlier (~) 
(having error bars distinctly smaller than the dimension of the circles), (ii) 
direct numerical calculations with the use of canonical partition functions 
(PF) according to the algorithm described in Section 2, (iii) predictions of 
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Fig.  1. Ana lys is  o f  several  stat is t ics fo r  the one -d imens iona l  [ e rm ion i c  la t t ice gas at  ~ = 0.646. 
The black circles present results of (i) Monte Carlo (MC) simulation, (ii) direct calculation 
by the canonical partition functions (PF), and (iii) our theoretical predictions (KB), which, 
on the scale of the figure, are indistinguishable. The open circles represent the conventional 
Fermi-Dirac (FD) statistics, and the crosses show predictions of the N6meth (N) theory. 

our theoretical approach (KB) discussed in Section 3 and in the Appendix, 
(iv) conventional Fermi-Dirac (FD) statistics, and (v) predictions of the 
N6meth (N) theory. (3~ As is seen, the first three types of results are 
indistinguishable on the scale of the figure. The agreement demonstrated 
here is better than that reached recently by N6meth. Moreover, the first 
two results are indistinguishable even in a more suitable scale; we can con- 
clude that these results are equivalent, though the first one is burdened 
with some small statistical error. It follows that the dynamic and static 
calculations provide the same equilibrium static distribution. In a more 
subtle scale one can observe, for r >> 1, a slight difference between the first 
two types of results (numerical) and the third one (theoretical), which is 
due to the approximation used in formula (3). 

The results presented in Fig. 1 confirm the earlier observations ~1'3) that 
the equilibrium distribution for the fermionic discrete lattice gas derived 
within the canonical ensemble differs from the Fermi-Dirac statistics, 
especially for low temperatures in the vicinity of the Fermi level. The 
discrepancy does not vanish even if one increases the size of the system 
keeping the single-particle energy spectrum discrete, because this dis- 
crepancy eventually follows from the discreteness of the level spacing of the 
(energetic) ladder. 

However, within the grand canonical ensemble, when the number of 
particles on an individual ladder fluctuates, the above-mentioned dis- 
crepancy disappears (1'3) thanks to the fluctuation of the Fermi level. This 
means that the canonical and grand canonical treatments given here quite 
different results for the occupation numbers, (3~ even in the thermodynamic 
limit, as opposed to the ideal quantum Fermi gas. 



Ferrnionic Discrete Lattice Gas 819 

0 Z 4 6 8 h~ 
~ z �9 r - - ~  �9 �9 �9 �9 �9 �9 �9 �9 �9 

1 I I "  
�9 - r  [?.431 

o I:= 0646 l o o o o o o o o o 

05 • '~= 1.077 re 
I • • x x x • x x x 

i , 
o ~  . . . . . . . . .  + . . . . . . . . .  

[n% l ~ r 

sl  x ~0. X X X X X X X X I 
81 

!o  o o o o o o o o i 

L_ . . . . . . .  ~ . . . . . .  
h . 1 0  12 14 16 18 

Fig. 2. The correction term Yh vs. energy ~h--/l for three different values of dimensionless 
temperature z. 

In Fig. 2 we present the correction term Yh vs. energy eh-/~ on a 
semilogarithmic scale, for three characteristic values of dimensionless 
temperature r (note that T = 0.431 is equivalent to 100 K and T = 1.077 to 
250 K when Ae = 0.02 eV). In the figure the results obtained by the parti- 
tion function technique and those found theoretically are compared. On the 
scale of the figure, however, we cannot distinguish between these two types 
of results (therefore they are labeled by the same markers), although for 
temperatures T>0.5,  at points nearest to the Fermi level, the absolute 
values of the theoretical predictions are slightly smaller than the numerical 
data. The Yh term for the conventional Fermi-Dirac statistics is repre- 
sented by the horizontal dashed line. 

Finally, for possible comparison of our results with real experiments, 
we should at least: (i) extend our considerations for non-equally- 
distributed levels in the energy spectrum, (ii) consider particles with spin, 
which leads to the extension of the formula (4) for the case of a twofold 
spin-degeneracy, and (iii) permit jumps of particles also to the next-nearest 
and further neighbors. 

A P P E N D I X .  D E R I V A T I O N  A N D  S O L U T I O N  OF E Q U A T I O N  
FOR Yh 

Here we derive and solve the fourth-order algebraic equation for the 
correction term Yh, by using known relations (4) between the canonical 
partition functions (complete and incomplete) analogous to (2). The rela- 
tions for three consecutive values of the number of particles in the system 
can be written in the following brief way: 

Z(N, Np + q)= Zh(N-  1, Np + rl) + Zh(N-  1, Np -  1 + q) exp(-f ieh)  ( a l )  
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where t / = - 1 ,  0, 1 (and Np+ 1 < . N - 1 )  are assumed consecutively. By 
expanding both sides of the above relation [as was done in (3)] and by 
dividing the first relation with t /= - 1  by the second one with q = 0, and 
then that with ~/= 1 also by the relation with t /= 0, we obtain two inde- 
pendent equations for the exp(~h) and exp(Th/2) unknown variables. After 
simple arithmetic operations we finally obtain the sought equation for the 
combined variable Yh [ =exp(flk z + ~h-7h/2) ]  in the form 

(u +b.(Yh)3 +d . Y h + e = 0  (A2) 

where 

b = exp[ - (eh - #)fl] - exp( -y /2 )  

d = exp[ - (eh -- p) fl -- 7/2] {exp[ -- (eh --/~) fi] -- exp(7/2) } 

e = --exp[--2(eh -- #) fi] 

As is seen, if 7 =0,  then Y~= 1 is a constant solution of (A2), as 
expected, and then distribution n(h) is exactly given by the Fermi-Dirac 
statistics. In Section 4 we briefly discuss the physical conditions which 
make possible the important transition 7 ~ 0. If we put (formally) ~h =/~, 
then Yh=,/a~ = 1 would be the solution of Eq. (A2) for any arbitrary 7 (as 
expected). Moreover, from Eq. (A2) it is easy to find two characteristic 
asymptotic solutions. On the one hand, by assuming that e h - #  >> -7 /2  
(note that 7 is negative), we simply obtain Yh~exp(-7 /2) .  On the other 
hand, for ~ h - / ~ 7 / 2 ,  we have Yh~exp(y/2). Moreover, when T ~ 0  (at 
fixed A~) then from (A2) follows that also Yh~exp( -7 /2 )  for ~ h - # > 0 ,  
and Yh ~ exp(7/2) for eh - /1  < 0. Nevertheless, precisely at T =  0 both 
statistics are identical and equal to the (discrete) step function. 

The exact solution of (A2), which is consistent with the above- 
mentioned special cases, is derived in the standard way and has the form 

Y h = ( - ( b + A ) +  {(b+A) 2 -  16[y+(by-d) /A]}l /2) /4  (A3) 

where A = _+ (8y + b2) ~/2. For 7--0  the plus sign must be assumed, at any 
arbitrary value of energy eh. For 7 r 0 the plus sign is also correct, but only 
for eh ~</z, while for eh > # we must assume the minus sign. The value y is 
a real solution of the following third-order algebraic equation: 

8y 3 + (2bd-  8e) y - (eb 2 + d 2) = 0 (A4) 

The solution y is 

y = u  - u +  
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where u+ = [(q2+p3)1/2+_q]l/3, with q =  - ( e b 2 + d 2 ) / 1 6  and p =  
( b d -  4e)/12. The real solution y can be represented in such a form because 
q and p are real and, what is most important,  p > 0 except for the cases 
when eh=/z or/and 7 = 0 ;  but then q = 0  and we have y = 0 ,  for any 
arbitrary p. Note that the values A, b, d, e, q, p, u+_, and y are (in general) 
h-dependent, although this index was omitted to simplify the notation. 

The extension of the present approach for the h-dependent level 
spacing is straightforward (which means that it was no necessary to assume 
in the whole consideration that energy eh = h A~, h = 0,..., N - 1 ,  where 3~ 
is h-independent), 

We conclude that the closed analytical and not too complicated 
formula (A3) has been obtained for the correction term Y~,. 

N O T E  A D D E D  IN P R O O F  

After completing this paper we found refs. 7-10 where authors studied 
metallic fine particles and/or granular superconductors suggesting existence 
of the phenomena related to that discussed here. 
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